SRP-27 is a novel component of the supramolecular signalling complex involved in skeletal muscle excitation-contraction coupling.
نویسندگان
چکیده
SRP-27 (sarcoplasmic reticulum protein of 27 kDa) is a newly identified integral membrane protein constituent of the skeletal muscle SR (sarcoplasmic reticulum). We identified its primary structure from cDNA clones isolated from a mouse skeletal muscle cDNA library. ESTs (expressed sequence tags) of SRP-27 were found mainly in cDNA libraries from excitable tissues of mouse. Western blot analysis confirmed the expression of SRP-27 in skeletal muscle and, to a lower extent, in heart and brain. Mild trypsin proteolysis combined with primary-structure prediction analysis suggested that SRP-27 has four transmembrane-spanning alpha helices and its C-terminal domain faces the cytoplasmic side of the endo(sarco)plasmic reticulum. The expression of SRP-27 is higher in fast twitch skeletal muscles compared to slow twitch muscles and peaks during the first month of post-natal development. High-resolution immunohistochemistry and Western blot analysis of subcellular fractions indicated that SRP-27 is distributed in both longitudinal tubules and terminal cisternae of the SR, as well as in the perinuclear membrane systems and the nuclear envelope of myotubes and adult fibres. SRP-27 co-sediments with the RyR (ryanodine receptor) macromolecular complex in high-salt sucrose-gradient centrifugation, and is pulled-down by anti-RyR as well as by maurocalcin, a well characterized RyR modulator. Our results indicate that SRP-27 is part of a SR supramolecular complex, suggesting the involvement of SRP-27 in the structural organization or function of the molecular machinery underlying excitation-contraction coupling.
منابع مشابه
STAC3 stably interacts through its C1 domain with CaV1.1 in skeletal muscle triads
The adaptor protein STAC3 is essential for skeletal muscle excitation-contraction (EC) coupling and a mutation in the STAC3 gene has been linked to a severe muscle disease, Native American myopathy (NAM). However the function of STAC3, its interaction partner, and the mode of interaction within the EC-coupling complex remained elusive. Here we demonstrate that STAC3 forms a stable interaction w...
متن کاملRole of Calsequestrin and Related Luminal Ca-Binding Proteins as Mediators of Excitation-Contraction Coupling
Changes in cytoplasmic Ca-levels regulate the contractile status of skeletal muscle fibres, whereby the finely tuned interplay between voltage sensors, Ca-release channels, Cabinding proteins and Ca-pumps mediates Ca-cycling through the sarcoplasmic reticulum. Although the physical coupling between the α1S-dihydropyridine receptor of the transverse tubules and the ryanodine receptor Ca-release ...
متن کاملMembrane Cholesterol in Skeletal Muscle: A Novel Player in Excitation-Contraction Coupling and Insulin Resistance
Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization...
متن کاملDevelopmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.
Two types of calcium channels signal excitation-contraction (E-C) coupling in striated muscle: dihydropyridine receptors (DHPRs, voltage-gated L-type calcium channels on the transverse tubule) and ryanodine receptors (RyRs, calcium release channels on the sarcoplasmic reticulum). Sarcolemmal depolarization activates the DHPR; subsequently, the RyR is activated and releases calcium that activate...
متن کامل3D Structure of the Dihydropyridine Receptor of Skeletal Muscle.
Excitation contraction coupling, the rapid and massive Ca(2+) release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR1) mediates the quasi-instantaneous conversion from T-tubule d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 411 2 شماره
صفحات -
تاریخ انتشار 2008